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INTRODUCTION

Cellulose has become one of the sustainable materials that suits to a broad type of applications 
due to its biodegradable attributes (Cucolo et al. 2001). It is the most abundant renewable 
material with 75 billion tonnes production per year around the globe (Youseef et al. 2010). 
The story of cellulose began in the year of 1838 when a French alchemist, Anselme Payen 
successfully extracted the cellulose from green plants (Sullivan 1997). Figure 1 shows the 
illustration of cellulose in plant cell and Figure 2 shows the chemical structure of the cellulose.

Figure 1   (a) cellulose in plant cell, (b) cross section of cellulose structure (Seddiqi et al. 2021)

Figure 2   Chemical structure of cellulose (Wan Fathilah and Othaman 2019)

The long linear chains of cellulose allows the hydroxyl groups (-OH) on each anhydroglucose 
unit to interconnect with hydroxyl groups on adjacent chains by hydrogen bonding and van 
der Waals forces (Raghavan et al. 2015). This phenomenon accounts for the good mechanical 
properties of cellulose and makes it a prominent reinforcement agent. 
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Electrospun Nanofibres

Nanomaterials are materials possessing at least one external dimension that can be measured below 
100 nm. Nanomaterials can be divided into four classes. 0D (nanoparticles), 1D (nanofibers), 
2D (nanosheets) and 3D, a combination of each class (Tiwari et al. 2012). Nanofibre is one 
of the prominent materials among the group of nanomaterials. One of the most highlighted 
features of nanofibres is their high surface area-to-volume ratio and high porosity (Kenry 2017). 
Nanofibres also can be produced from either natural polymer or synthetic polymer (Behrens 
et al. 2014) using electrospinning process. Electrospinning process is the state of the art for 
producing nanofibre due to its feasible process (Feng et al. 2013). Figure 3 shows a common 
setup for electrospinning that consists of a voltage supply, syringe pump, nozzle, and a collector.

 
Figure 3   Common electrospinning setup (Ziabari et al. 2008)

In this process, material solution is injected using syringe pump and drawn through nozzle by 
electrostatic forces and collected as randomly formed fibres or oriented fibres. The properties 
of the nanofibre are affected by parameter of the solution viscosity, voltage, humidity, distance, 
and flow rate (Nasreen et al. 2013). 

Studies on electospun nanofibre using various synthetic and natural polymers are listed in the 
Table 1.

However, apart from numerous advantages, nanofibre posses low mechanical properties 
(Yao et al. 2014) due to several factors such as high porosity, randomly oriented fibres and 
weak interaction between the fibres network (Huang et al. 2014). These factors limited their 
applicability in many fields. There are few reported methods that could improve the mechanical 
properties such as heating, chemical cross-linking (Li et al. 2017), and mixing with reinforcement 
agent (Tarus et al. 2020) such as cellulose. High abundance with good mechanical properties, 
cellulose is a prominent reinforcement material in improving the mechanical properties of the 
nanofibre.

Electrospinning of cellulose

In order for cellulose to become feasible material for electrospinning process, cellulose 
must be converted into solution. However, the presence of strong intramolecular 
and intermolecular hydrogen bond and its rigid structure, almost no conventional 
solvent can dissolve cellulose (Raghavan Prasanth 2015). In the last decade, there are 
tremendous attempt to find an efficient and eco-friendly solvent to dissolve cellulose.
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Figure 3   Common electrospinning setup (Ziabari et al. 2008)

In this process, material solution is injected using syringe pump and drawn through nozzle by 
electrostatic forces and collected as randomly formed fibres or oriented fibres. The properties of 
the nanofibres are affected by parameter of the solution viscosity, voltage, humidity, distance, 
and flow rate (Nasreen et al. 2013). Studies on electrospun nanofibres using various synthetic 
and natural polymers are listed in Table 1.

However, apart from numerous advantages, nanofibres possess low mechanical properties 
(Yao et al. 2014) due to several factors such as high porosity, randomly oriented fibres and 
weak interaction between the fibres network (Huang et al. 2014). These factors limited their 
applicability in many fields. There are few reported methods that could improve the mechanical 
properties such as heating, chemical cross-linking (Li et al. 2017), and mixing with reinforcement 
agent (Tarus et al. 2020) such as cellulose. High abundance with good mechanical properties, 
cellulose is a prominent reinforcement material in improving the mechanical properties of 
nanofibres.

ELECTROSPINNING OF CELLULOSE

In order for cellulose to become feasible material for electrospinning process, cellulose must 
be converted into solution. However, the presence of strong intramolecular and intermolecular 
hydrogen bond and its rigid structure, almost no conventional solvent can dissolve cellulose 
(Raghavan et al. 2015). In the last decade, there are tremendous attempt to find an efficient and 
eco-friendly solvent to dissolve cellulose. At least, there are three types of solvents that seem 
prominent to dissolve cellulose which are NMMO (N-methylmorpholine-N-oxide) in Lyocell 
process (Mortimer 1996), sodium hydroxide-water solution in Celsol technology (Chen et al. 
2007) and imidazole-based ionic liquid (Wang et al. 2012).
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Among these, ionic liquid attracted many researchers to explore the feasibility as a safe solvent 
for cellulose due to its low melting temperature, high thermal stability, chemical stability, 
nonflammability, low toxicity and straightforward recycling process (Armand et al. 2009). 
Examples of ionic liquids that are successfully used in producing nanofibres using electrospinning 
process include 1-ethyl-3-methylimidazolium, 1-decyl-3-methylimidazolium chloride and 
N-methylmorpholine-N-oxide with co-solvents such as dimethylsulfoxide (DMSO), N,N-
dimethylacetamide (DMAc) and N,N-dimethylformamide (DMF) (Freire et al. 2011).

APPLICATION OF ELECTROSPUN NANOFIBRES CELLULOSE

As a material with exceptional properties, there are wide spectrum of applications for nanofibres 
cellulose. Figure 4 shows the applications of electrospun nanofibres cellulose. In biomedical 
field, cellulose has been studied for wound dressing application due to its high surface area-to-
volume ratio, good mechanical integrity, and its ability to imitate the topographical attribute 
of human skin that allows ample space for tissue regeneration (Gao et al. 2019). In cosmetic 
applications, there are growing interests in fabricating facial mask from nanofibres that are 
encapsulated with skincare products (Manatunga et al. 2020). In food packaging applications, 
nanofibres act as a reinforcement to strengthen the properties of a matrix material. Cellulose 
nanofibres can also increase the efficiency of gas and vapor permeability by introducing it 
as interlayers or coatings in the packaging (Torres-Giner 2011). Last but not least, cellulose 
electrospun nanofibres has also been in research spotlight for wastewater treatment.  In one 
of the researches, they found that cellulose electrospun nanofibres exhibit good hydrophilic 
properties, robust dye adsorption and photocatalytic degradation which are good for the complex 
treatment of a wastewater system (Lu et al. 2021).

Figure 4   Application of electrospun nanofibres cellulose

CONCLUSION

At present, the usage of nanofibres cellulose is expected to emerge in many applications due 
to its unique attributes. In addition, cellulose is an alternative material to replace plastic for a 
sustainable future.
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Due to its remarkable features such as high surface area-to-
volume ratio and superior porosity, electrospun nanofibres 
have gained the interest of many researchers in recent 
years. Aside from being facile to fabricate, the wide range 
of materials that can be used to generate nanofibres are also 
a draw for researchers. However, there have not been many 
studies on cellulose electrospun nanofibres due to the fact 
that cellulose is a difficult substance to be dissolved in order 
to electrospun. In this paper the research related to cellulose 
electrospun nanofibres and their applications are explained.


